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Abstract. Diffusion in random-layered media is considered. The non-Gaussian diffusion 
kinetics is constructed for two models of random-layered structures. The transition of 
diffusion in such media to asymptotic Gaussian behaviour is studied. A new approach to 
the description of the kinetics of relativistic electron dechannelling in a crystal is proposed 
which is based on the concept of diffusion in a random-layered medium developed here. 

1. Introduction 

Recently, increasing interest has been shown in problems where diffusion is attended 
by another random process. Since diffusion is a random process, this is a case of 
‘double randomness’ whose physics is basically as follows. In real systems, non- 
equilibrium perturbations are of a random nature, which causes the structure of the 
medium to be stochastic. When the relaxation of non-equilibrium perturbations is 
represented by diffusion equations, one may describe diffusion flows with space- and 
time-random diffusion coefficients. Of particular interest, as a rule, are flows averaged 
over scales exceeding the characteristic correlation scales of the diffusion coefficient. 
Correct procedure of averaging shows that the kinetics of such types of diffusion is 
given by equations differing from the traditional diffusion equations. The difference 
can consist, for example, of an additional term containing fourth-order space derivatives 
and in modification of the diffusion coefficient entering into the term which is square 
with respect to space derivatives (Dubinko et a1 1986). 

Along with the above situation, where initiation of diffusion and formation of a 
stochastic structure of the medium are interrelated, there is a set of problems on 
diffusion in a medium with specified stochastic characteristics, e.g., the problem of 
wave propagation in random inhomogeneous media (Klyatskin 1980). Among these 
is the problem studied in this paper, namely diffusion in a random-layered medium. 
Two exactly solvable models are used as an example to construct the non-Gaussian 
diffusion kinetics in random-layered media. 

In § 2 we formulate the problem of a distribution function describing diffusion in 
a random-layered medium. A random structure is modelled by a telegraph process. 
It is shown that the kinetics is non-local. The role of the higher-order moments of the 
probability distribution describing the structure of the medium is discussed. The 
criterion of the Gaussian behaviour of diffusion is presented. 

In § 3, the random-layered structure is modelled by a Poisson process. It is shown 
that the problem of finding the stochastic characteristics of diffusion in a Poisson- 
layered medium may be formulated as a problem of construction of thermodynamics 
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of a one-dimensional gas with a positive pairwise interaction potential. The diffusion 
kinetics in such a medium in the limit of a ‘non-interacting particles gas’ is described 
by an equation similar to the linear Boltzmann equation. The range of applicability 
of the Gaussian approximation for description of diffusion in a Poisson random-layered 
medium is studied. 

Section 4 proposes a new approach to construction of the dechannelling kinetics 
of relativistic electrons in crystals based on the concept of diffusion in random-layered 
media developed in this paper. 

2. Diffusion in a random structure modelled by a telegraph process 

It is well known that the stochastic equation 

i ( 7 )  = T ( T )  (2.1) 

where ~ ( 7 )  is the white noise, leads to the diffusion equation for the distribution 
function f ( x  - xo; r )  of the quantity x t :  

f ( x - x o ;  T ) = ( ~ ( x - - x ? ( r ;  xo))q (2.2) 

a f ( x  - x o ;  7) - a2 
a7 - D - y f ( x - x , ;  ax 7 )  

(2.3) 

f ( x  - x,; 7 = 0) = 6 ( x  - x,) 

where x,,(T; xo> is the formal solution of (2.1) depending on the initial data xo ,  (. . .),, 
means averaging over the white noise performed according to the Wick theorem with 
a relation determined by the pair correlator ( T (  T ) T (  T ) ) ?  = 2 0 6 (  T - 7’) and D is the 
diffusion coefficient. 

Consider now the situation of the diffusion process being switched on and off in 
a random way. For example, in the problem of multiple scattering (Ter-Mikaelian 
1972), we deal with the transit of a fast charged particle through random-thickness 
plates of matter separated by random-width vacuum gaps. In the plane perpendicular 
to the particle transit direction through the stochastic structure there is diffusion in 
every plate and free motion in the vacuum gaps. The alternate random regions, i.e. 
diffusion and no-diffusion time intervals, are here identified as the random-layered 
medium. Accordingly, we shall modulate the white noise by another process l ( ~ )  
statistically independent of the white noise; that is, let us consider the following 
stochastic equation: 

X(7) = T ( 7 ) 5 ( 7 ) .  

For certain specified realisations of the processes V ( T )  and C(T) this equation has the 
formal solution 

X ( r )  = xo+ J’ dt  T ( f ) L ( t )  

t We consider the one-dimensional case, though all the arguments are easy to generalise to the three- 
dimensional case. 
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The simultaneous statistical characteristics of the process X ( T )  can be found if the 
distribution function f ( x  - xo; 7) defined in (2.2) is known: 

(2.4) 

f ( x  - xo; 7 = 0) = 6(x - xg) 

where (. . .)?,< means averaging over the white noise and the realisations of the process 
l( T ) ,  where the order of averaging can be changed due to the statistical independence 
of the processes. The procedure of averaging over the random process ((7) will be 
defined later, after the process L ( T )  has been defined. Let us now average (2.4) over 
~ ( 7 ) .  By representing expression (2.4) as a Fourier integral 

(2.5) f ( x  - xo; 7) = - dk eik(x-xo) - f (k, 7) 257 Î ‘ -a 

we find the Fourier image as follows: 

f( k, 7) = (exp( -k2D d t  12( t ) ) )  . 
c 

We shall consider in this section the process ((7) as some version of the telegraph 
process. Its typical realisation represented in figure 1 is a step function equal to 0 or 
1, the ‘jump’ from 0 to 1 and back occurring at random points ri. The jumps of the 
process (( T )  provide switching on and off the diffusion mechanism. The process (( 7) 
is defined as follows: 

4x7) =+(1+z(7))  (2.7) 

where the random process Z(T) is given by the following relations (Klyatskin 1980, 
Kats 1967): 

z(7) = ( - 1 ) n ( o , 7 )  z(0) = 1 z’( 7) = 1 (2.8) 

where n(0, 7) is the number of points T~ falling within the interval (0, 7) which is a 
random quantity with the Poisson distribution law: 

0 .I 

Figure 1. One of the possible realisations of the random process l ( ~ ) .  
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a 
-f(x-x,; 7) 
a7 

f ( x  -x,; 0) = S(x - x,) 

where v is the average number of points per unit time. The first two moments of the 
process z ( r )  are: 

(z( T ) ) ~  = e-2vT ( Z ( T ~ ) Z ( T ~ ) ) ~  = e-2v(rl-rz) (71 2 7 2 )  

and the higher-order moments satisfy the recurrence relation 

S(x - x,). 
D a* 

,=, 2 ax2 
=-- 

These expressions define the procedure of averaging over realisations of the process 
z ( r )  denoted by (. . 

In view of relations (2.7) and (2.8), we represent (2.6) as 

f(k, r ) = e x p (  - T ) ( e x p (  k’Dr -9 J:dtz(t))) 
z 

By averaging over z and using the definition (2.5), we obtain 

dke’*‘”’~)exp[ - ( ~ + v ) r ]  k2 D 

x [ cosh ( v2+- k y 2 ) 1 ’ 2  r + v  ( v 2 + -  k:2)-1’2 sinh ( U’+- k4f2)1/2r] 

The distribution function constructed in this way satisfies the following kinetic 
equation: 

f(x-x,; r)+-- dt  
a7 2 ax2 D2 4 ax4 a4 J: ~ ~ ( x - x O ;  r )  D a’ - 

02 

dx’G(x - x’; T - t)f(x’- xO; t )  I-, 
where 

G(x, 7 )  = ( 2 7 r D ~ ) - ” ~  exp(-x2/2D~) .  

(2.10) 

As is suggested by this equation, the diffusion in a random-layered medium is non-local. 
The first term on the right-hand side of (2.10) is a standard diffusion term due to the 
first moment of the probability distribution describing the medium structure while the 
integral term in (2.10) is due to higher-order moments. Here we consider the situation 
when higher-order moments should be taken into account in addition to the first one, 
as, e.g., in the problem of intermittency in random media (Zel’dovich et al 1987). 

For large U, when the medium structure looks like a thick comb, (2.10) becomes local: 

(2.11) 

Let us show that this equation has no unstable (increasing with r )  solution. Using 
relation (2.5), obtain 
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Instability might be the case for 1 - k2D/4v < 0, i.e. for k2 > 4 v /  D, which corresponds 
to the scale x < ( D / ~ V ) ” ~ .  This inequality means that the kinetics is realised within 
a single switching of the diffusion mechanism, i.e. we disregard the statistics of random 
lamination which was essentially taken into account in deriving (2.10) and (2.11). 
Thus, the applicability conditions of (2.10) and therefore of (2.11) are violated. Hence, 
(2.11) has no unstable solution on the scales of its applicability. 

Obviously, when T >> v - l ,  we deal with Gaussian diffusion and (2.10) transforms 
into the equation 

Since diffusion and no-diffusion intervals have the same statistics, the averaged diffusion 
coefficient is in this equation half as large as that for a homogeneous medium (see (2.3)). 

Thus, diffusion in a telegraph-type medium is given by the integro-differential 
kinetic equation (2.10). This is equivalent to the second-order differential equation 

This fact implies that the medium stochastic structure is described by a process with 
two possible states. Due to statistics of the medium the integral term on the right-hand 
side of (2.10) contains only a pair correlator, as is the case for a random medium with 
Gaussian properties (Dubinko er a1 1986). This is evidently caused by stochastic 
property (2.9) of a telegraph random-layered medium. 

3. Poisson random-layered structure 

Remembering the example of the preceding part of the problem on multiple scattering, 
let us consider a random alternation of plates of matter which is given by the Poisson 
(pulsed) process l( T) = X i  g( T - T , ) ,  where the points T~ are uniformly distributed in 
the interval (0, 7)  and their number n obeys the Poisson law with the parameter ii = UT. 
Restricting ourselves to the case of plane-parallel plates of thickness A, we choose the 
function g ( 7 )  describing the pulse shape as 

g ( 7 )  = X ( T ) X ( A -  7) (3.1) 

where X ( T )  is the Heaviside step and 

Here the plate thickness A and parameter v (v-’ is the average plate distance) must 
satisfy the condition A << v-’, provided there is no penetration of matter from one plate 
into another. Note that the probability of interpenetration of plates or superposition 
of the pulses g ( T ) ,  i.e. of an event for which the distance between neighbouring points 
T~ is smaller than A, is p = 1 - e-A” = A V .  
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The averaging over realisation of the Poisson process l ( ~ )  denoted by (. . .)L is 
defined as follows: 

(3.2) 

By averaging expression (2.6) and taking account of the explicit form of the function 
g(7) defined by (3.1), we obtain 

where 
r r  

We represent expression (3.3) as 

f(k, T )  = e-”‘ 2 znQn 
n =o 

where the parameter z = v e-k2DA will be identified in terms of the equilibrium statistical 
mechanics as ‘activity’, and Qn 

Q n = - [  1 ‘  d i , . . ~ ‘ d ~ , , e x p ( - 2 k 2 D  i + ( / T ~ - T ~ ) )  

n! 0 i s j = l  

will be called the ‘configuration integral’. By expanding the configuration integral in 
terms of connected groups, the following expression for f( k, T )  is easily obtained: 

where bf are the group integrals 

J j  being the Mayer functions, J j  = exp[-2k2D4(1~, - T ~ I ) ]  - 1. The expression for bl 
includes the sum of products of the functions Jlr for particles bound by ‘f-bonds’ 
(Isihara 1971). 

By analogy with statistical mechanics, the quantity 2 k 2 D  can be called the ‘reciprocal 
temperature’. Thus, calculation of the Fourier transform f ( k ,  T )  (see (3.3)) of the 
distribution function describing the diffusion kinetics in the Poisson random-layered 
structure formally reduces to calculation of a large statistical sum of a one-dimensional 
gas of particles in the ‘volume’ T with a positive potential of a pairwise interaction 
4 ( ~ )  30. It is easy to show that expansion in powers of ‘activity’ is in fact a series in 
powers of the parameter Au, which characterises the degree of imperfection of this 
one-dimensional gas. 

We shall construct the diffusion kinetics in the Poisson random-layered medium 
in the ‘ideal gas approximation’. The reason is that the layered structure under 
consideration consists of plates of an equal thickness A separated by random gaps 
distributed by an exponential law with the parameter U, and in view of the condition 
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A v << 1 can be treated by analogy with statistical mechanics as a one-dimensional ideal 
gas. In other words only the first term with I = 1 should be retained in the exponent 
of formula (3.5). Noting that 

1 
b, =; I,' dr ,  = 1 

and z = v e-k2DA, we obtain f( k, r )  = exp[ vr(e-k2DA - l)] and hence: 

This distribution is non-Gaussian and satisfies a kinetic equation of the linear 
Boltzmann equation type: 

f ( x  - xo; r = 0) = 6 ( x  - xo) .  

The 'double randomness' mentioned in § 1 manifests itself here as the Boltzmann 
structure of the kinetic equation (3.7), which is due to the Poisson process, and in the 
diffusive character of the kernel of this integral equation. Asymptotically, at large 
times, vr >> 1 (after transit through a large number of plates) the diffusion becomes 
Gaussian and, as is easy to see, the kinetic equation (3.7) transforms into the traditional 
diffusion equation 

a2 
ar ax 

= D A v 7 f ( x - x o ;  r )  a f ( x  - xo; 7) 

f ( x  - xo; r = 0) = 6 ( x  - xo) 

with an averaged diffusion coefficient which is A V  times smaller than that in a 
homogeneous medium (cf (2.3)). 

Now we introduce the new variables y = XI-, yo = x o / m  and P = VT, in 
order to carry out a quantitative analysis of diffusion characteristics in a Poisson 
random-layered medium. In these variables the solution of (3.7) denoted by f,(y - 
Yo; P )  is 

The solution of (3.8), which we denote by f2(y -yo; P )  in the same variables can be 
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represented in the form 

X 

dYf*(Y -yo; P )  = 1. (3.10) 

Consider, using the functions f,(y -yo; P )  and f2(y -yo; P ) ,  the evolution of an initial 
distribution in a Poisson random-layered medium and in a homogeneous amorphous 
medium characterised by the averaged diffusion coefficient DAv. Choosing the 

fl =0.1 

I 

p = 2.5 d2.5 

Y 

Figure 2. The vertical axis is the range of the function: 9 , ( y ;  a, p )  is the curve assuming 
maximum values at y = 0 for all values of p ;  cp2(y; a, p )  is the curve assuming an intermedi- 
ate value at y = 0; and (cp,(y; a, 0) - cp2(y; a, p ) )  is the curve assuming the minimum values 
at y = 0 for all values of p. The numerical value of the parameter a is 0.2. The parameter 
p is interpreted as time. Note that both the horizontal scale ( y  values) and the vertical 
scale (values of cpl, pZ, cp, - (p2) vary from one p value to another. 
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Gaussian distribution with the variance a ,  cp(y,, a )  = ( 7 ~ a ) - ” ~  exp(-yi/a) to be the 
initial condition, we find 

=e-’ “ p ”  7 1 exp( --L) 
,,,=, m J . r r ( a+m)  a + m  

(3.11) 

(3.12) 

Figure 2 shows the functions cpl(y; a, p )  and cp2(y; a ,  P )  for y 3 0  at fixed ‘moments 
of time’ P. As is seen, for small P the diffusion in a Poisson random-layered medium 
is essentially non-Gaussian, whereas for large P there appears an asymptotic Gaussian 
behaviour characterised by the averaged diffusion coefficient DA v. 

To conclude this section, we note that diffusion in random-layered media is of a 
more complex statistical character than diffusion in its traditional sense. The form of 
the kinetic equations describing the diffusion kinetics in such media depends on the 
stochastic properties of the medium. Thus, in a medium approximated by the Poisson 
process, diffusion is given by the kinetic equation (3.7) of Boltzmann type, while in a 
medium modelled by a telegraph process the diffusion kinetics is given by (2.10). The 
diffusion processes given by (2.10) and (3.7) are non-Gaussian. Asymptotically, VT >> 1, 
diffusion in random-layered media becomes Gaussian and is characterised by an 
averaged diffusion coefficient which is smaller than in the case of a homogeneous 
medium. 

4. Channelling, dynamic stochastisation and diffusion 

In this section we shall show how, on the basis of the concept of diffusion in a Poisson 
random-layered medium formulated in the preceding section, a new approach to the 
description of the kinetics of channelled relativistic electrons in crystals can be 
developed. 

When relativistic electrons with the energy E are incident onto a crystal along one 
of the crystallographic axes (the z axis), they can experience a channelling effect, i.e. 
move in channels formed by chains of crystal atoms. That is to say, motion of an 
electron is determined chiefly by the continuous potential of crystal atom chains, 
namely the crystal potential averaged over the z coordinate (Ahiezer and Shul’ga 1987) 

where U( r - r k )  is the potential energy of the interaction of an electron with a lattice 
atom situated at the point rk, p = (x, y )  are the coordinates in the plane of the orthogonal 
z axis, and T is the crystal thickness. 

The transverse motion energy E ,  of an electron is defined as E ,  = ; E @ * +  U ( p ) ,  
<< E.  Because E ,  changes as a result of electron scattering by thermal vibrations of 

lattice atoms, the finite motion of the electron (channelling) can become infinite 
(above-barrier motion) with respect to the z axis. This effect is called dechannelling. 
It has usually been assumed that particle motion in a channel is periodic and the 
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dechannelling process develops adiabatically with the depth of particle penetration 
into the crystal. Accordingly, the fast electron kinetics in a channel is described by 
Fokker-Planck equations, with the diffusion coefficients averaged over the particle 
motion period. Recently, however, two new effects have been revealed in the problem 
of relativistic charged particle motion through crystals. One of them is associated with 
the fact that in the field U ( p )  (one of its possible realisations is shown in figure 3) 
the dynamics can be not only regular, but also stochastic. This phenomenon was 
discovered in numerical experiments aimed at the construction of PoincarC mappings 
for a dynamic trajectory in the field U ( p ) .  The stochasticity region in the PoincarC 
mapping depends both on the initial conditions determining the channelled electron 
trajectory and on E , .  For E ,  = 0.5 U,, where U, = -24 eV is the potential energy at the 
saddle point (see figure 3), as is found by an analysis of the PoincarC mapping, 
practically all trajectories in the channel are stochastic (Ahiezer and Shul’ga 1987, 
Shul’ga et al 1987). The other effect is that in a wide particle energy range, when 
channelled electrons pass through the region of crystal thermal vibrations, there are 
strong fluctuations of the transverse energy integral ( 8 ~ : ) ” ~ -  (Bazylev et al 1986, 
Shul’ga 1986). Thus, there arises the question of how these factors are to be allowed 
for and how they influence the dechannelling kinetics. 

The energy of the electron transverse motion changes mainlyt when electrons pass 
through the region of the order of the atom thermal vibration amplitude ( w * ) ” ~ ,  and 
if distances from the channel axis are over ( w ~ ) ” ~ ,  it remains constant. In the latter 
case the electron motion, as has been mentioned, is determined by the continuous 

Figure 3. Equipotential surfaces of the continuous potential energy of the interaction of 
a silicon crystal with an electron moving along the (110) axis and typical regular (a, b )  
and chaotic (c ,  d,  e )  trajectories of channelled and above-barrier electrons in the plane 
perpendicular to the axis (110). The numbers on the lines indicate negative values of U ( p )  
in eV; U ( p )  is assumed to be zero at the centre of a cell. Figure taken from Shul’ga (1986). 

t Multiple scattering of a moving particle by the crystal electron subsystem will be neglected. 
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potential of the atom chain. Thus, in the case of electron channelling, the transverse 
motion energy will only change at short trajectory sections (the channel being much 
wider than ( w * ) ” ~ ) ,  crossing the thermal vibration region. For chaotic motion of an 
electron (see, e.g., trajectory d in figure 3) time intervals between successive transits 
through the thermal vibration region are random. Therefore, electron channelling in 
dynamic chaos is a problem of multiple scattering of a fast charged particle in a 
random-layered medium (see figure 4). The ‘double randomness’ discussed in 0 1 
seems to manifest itself here as randomness of instants of electron inflight into ‘plates’, 
i.e. regions of crystal thermal vibrations, caused by dynamic stochasticity. It also 
appears in the diffuse character of motion in every ‘plate’, i.e. during motion in the 
themal vibration region. We emphasise that both the random processes are realised 
in the plane perpendicular to the z axis. 

P 

( a i  I bl 

Figure 4. ( a )  Stochastic trajectory of an electron in a channel in the plane perpendicular 
to the (110) axis ( z  axis1 in a Si crystal. The shaded regions are the regions of crystal 
lattice atom thermal vibrations. ( b )  ‘Development’ of the stochastic trajectory of penetration 
into the crystal ( z  is the penetration depth). 19, ( i = x , y )  are components of the two- 
dimensional vector, the angle between the z axis and the electron momentum. 

Let us study the dechannelling kinetics for the case of dynamic chaos and large 
fluctuations of the transverse motion energy integral using as an example the model 
constructed in the preceding section. The multiple scattering in a random-layered 
medium will be characterised by the two-dimensional vector 9 (see figure 4(b)) .  The 
kinetic equation describing the evolution of the distribution functionf( 6, z )  of electrons 
in the angles 9 at the depth of penetration into a crystal, z, is as follows, according 
to (3 .7):  

f(9, z = 0) = S ( 9 )  

where Y-’ is the average plate separationt, A the plate thickness and D the diffusion 
coefficient in the atom vibration region. 

t The velocity of light is assumed equal to unity, c =  1; thus, the z component of the electron velocity is 
u z = c = l .  
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For vz >> 1, corresponding to the case of electron transit through a larger number 
of plates, the diffusion becomes Gaussian, and (4.1) transforms into the diffusion 
equation 

with an averaged diffusion coefficient. 
Thus, the above proposed approach to the description of the dechannelling process 

as diffusion of a particle in a random-layered medium leads to the following conclusions. 
In the case of a single transit of an electron through the lattice atom thermal vibration 
region, fluctuations of the transverse motion energy integral ( 8 ~ : ) ~ ’ ~  can be higher 
than 1 ~ ~ 1 ,  so the electron leaves the channel very soon (Bazylev er al 1986, Shul’ga 
1986). The dechannelling process in this case occurs at the depth z - v-l ,  where the 
particle distribution in angles is non-Gaussian. This is the case, e.g., for channelling 
of electrons with the energy E - 1 GeV in a silicon crystal along the (110) axis. As the 
electron energy increases the quantity ( 8 ~ : ) ~ ’ ~  decreases. If (8~;)’’~- 1 ~ ~ 1 ,  then the 
electron, before leaving the channel, will cross the atom thermal vibration region 
several times. Dechannelling in this case is not adiabatic, but the process can be 
studied on the basis of the diffusion equation (4.2) with the diffusion coefficient averaged 
over realisations of stochastic trajectories of particles in the channel, the said realisations 
depending both on dynamic stochastisation and on transverse motion energy integral 
fluctuations. 

When ( 8 ~ : ) ’ ”  << I el l ,  the dechannelling process develops adiabatically, with increas- 
ing penetration depth of the particle. This process can be described on the basis of 
the standard diffusion equation with the diffusion coefficient averaged over stochastic 
trajectories generated by the chaotic dynamics of particles in the channel (fluctuations 
of the transverse motion energy integral may be neglected in this case). 

5. Conclusion 

We have studied diffusion in random-layered media, using two exactly solvable models 
as examples. The statistical structure of such diffusion is shown to be of a non-Gaussian 
character, unlike the traditional concept of diffusion. Based on the results of the study, 
a new approach is proposed to describe the dechannelling of relativistic electrons in 
a crystal as diffusion of a particle in a random-layered medium. 
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